Kumpulan Soal-soal Bab 5 Integral Beserta Jawaban Buku Kalkulus dan Geometri Analisis Jilid 1 Edisi Keempat


Soal-Soal 5.1

Carilah anti turunan F(x) + C yang umum untuk Soal-soal 114.

1.     f (x) = 4

2.     f (x) = 2x – 4

3.     f (x) = 3x2 + √2

4.     f (x) = 5x4 + π

5.     f (x) = x2/3

6.     f (x) = x–3/4

7.     f (x) = 6x2 – 6x + 1

8.     f (x) = 3x2 + 10x – 7

9.     f (x) = 18x8 – 25x4 + 3x2

10.  f (x) = x2(20x7 – 7x4 + 6)

11.  f (x) = 4/x5 – 3/x4

12.  f (x) = 1/x3 + 6/x7

13.  f (x) = (4x6 + 3x5 – 8)/x5

14.  f (x) = (2x3 – 3x2 + 1)/x2

 

Penyelesaian

1.     f(x) = 4

= ∫ 4 dx

= 4/1 x + c

= 4x + c

 

2.     f(x) = 2x – 4

= ∫ (2x – 4) dx

= 2/2 x2 – 4/1 x + c

= x2 – 4x + c

 

3.     f(x) = 3x2 + √2

= ∫ (3x2 + √2) dx

= 3/3 x3 + √2/1 x + c

= x3 + √2x + c

 

4.     f(x) = 5x4 + π

= ∫ (5x4 + π) dx

= 5/5 x5 + 1/1 πx + c

= x5 + πx + c

 

5.     f(x) = x2/3

= ∫ x(2/3) dx

= 1/(5/3) x5/3 + c

= 3/5 x5/3 + c

 

6.     f(x) = x–3/4

= ∫ x–3/4 dx

= 1/(1/4) x1/4 + c

= 4x1/4 + c

 

7.     f(x) = 6x2 – 6x + 1

= ∫ (6x2 – 6x + 1) dx

= 6/3 x3 – 6/2 x2 + 1/1 x + c

= 2x3 – 3x2 + x + c

 

8.     f(x) = 3x2 + 10x – 7

= ∫ (3x2 + 10x – 7) dx

= 3/3x3 + 10/2x2 – 7/1x + c

= x3 + 5x2 – 7x + c

 

9.     f(x) = 18x8 – 25x4 + 3x2

= ∫ (18x8 – 25x4 + 3x2) dx

= 18/9 x9 – 25/5 x5 + 3/3 x3 + c

= 2x9 – 5x5 + x3 + c

 

10.  f(x) = x2 (20x7 – 7x4 + 6)

= ∫ (20x9 – 7x6 + 6x2) dx

= 20/10 x10 – 7/7 x7 + 6/3 x3 + c

= 2x10x7 + 2x3 + c

 

11.  f(x) = 4/x5 – 3/x4

= ∫ (4x–5 – 3x–4) dx

= 4/(–4) x-4 – 3/(–3) x-3 + c

= –1/x4 + 1/x3 + c

 

12.  f(x) = 1/x3 + 6/x7

= ∫ (x–3 + 6x–7) dx

= 1/(–2) x–2 + 6/(–6) x–6 + c

= –1/2 x2 – 1/x6 + c

 

13.  f(x) = (4x6 + 3x5 – 8)/x5

= ∫ (4x + 3 – 8x–5) dx

= 4/2 x2 + 3/1 x – 8/(–4) x–4 + c

= 2x2 + 3x + 2x-4 + c

= 2x2 + 3x + 2/x4 + c

 

14.  f(x) = (2x3 – 3x2 + 1)/x2

= ∫ (2x – 3 + x-2) dx

= 2/2 x2 – 3/1 x + 1/(–1) x–1 + c

= x2 – 3x – 1/x + c

 

Dalam Soal-soal 15 - 22, carilah integral tak tentunya.

15.  ∫ (x3 + √x) dx

16.  ∫ (x2 + 1)2 dx

17.  ∫ (y2 + 4y)2 dy

18.  y2(y2 – 3) dy

19.  ∫ (x4 – 2x3 + 1) dx

20.  ∫ (x3 – 3x2 + 1)/√x dx

21.  ∫ (3 sin t – 2 cos t) dt

22.  ∫ (3t2 – 2 sin t) dt

 

Penyelesaian

15.  ∫ (x3 + √x) dx

= ∫ (x3 + x1/2) dx

= 1/4 x4 + 1/(3/2) x3/2 + c

= 1/4 x4 + 2/3 x3/2 + c

 

16.  (x2 + 1)2 dx

= ∫ (x4 + 2x2 + 1) dx

= 1/5 x5 + 2/3 x3 + 1/1 x + c

= 1/5 x5 + 2/3 x3 + x + c

 

17.  ∫ (y2 + 4y)2 dy

= ∫ (y4 + 8y3 + 16y2) dy

= 1/5 y5 + 8/4 y4 + 16/3 y3 + c

= 1/5 y5 + 2y4 + 16/3 y3 + c

 

18.  (y2 (y2 – 3) dy

= ∫ (y4 – 3y2) dy

= 1/5 y5 – 3/3y3 + c

= 1/5 y5 – y3 + c

 

19.  ∫ (∫x4 – 2x3 + 1)/x2 dx

= ∫ (x2 – 2x + x-2) dx

= 1/3 x3 – 2/2 x2 + 1/(–1) x1 + c

= 1/3 x3x2 – 1/x + c

 

20.  ∫ (x3 – 3x2 + 1)/√x dx

= ∫ (x5/2 – 3x3/2 + x1/2) dx

= 1/(7/2) x7/2 – 3/(5/2) x5/2 + 1/(1/2) x1/2 + c

= 2/7 x7/2 – 6/5 x5/2 +2√x + c

 

21.  ∫ (3 sin t – 2 cos t) dt

= – 3 cos t – 2 sin t + c

= – (3 cos t + 2 sin t) + c

 

22.  ∫ (3t2 – 2 sin t) dt

= 3/3 t3 – (–2 cos t) + c

= t3 + 2 cos t + c

 

Dalam Soal-soal 23 – 38, gunakan metode – metode pada Contoh 5 dan 6 untuk mencari integral tak-tentu.

23.  ∫ (3x + 1)4 3 dx

24.  ∫ (x2 – 4)3 2x dx

25.  ∫ (5x3 – 18)7 15x2 dx

26.  ∫ (x2 – 3x + 2)2 (2x – 3) dx

27.  ∫ 3x4 (2x5 + 9)3 dx

28.  ∫ 3x √(3x2 + 7) dx

29.  ∫ (5x2 + 1) (5x3 + 3x – 8)6 dx

30.  ∫ (5x2 + 1) √(5x3 + 3x – 2) dx

31.  ∫ 3t (2t2 – 11) dt

32.  ∫ 3y/√(2y2 + 5) dy

33.  sin4 x cos x dx

34.  ∫ (cos4 2x) (–2 sin 2x) dx

35.  ∫ (sin5 x2) (x cos x2) dx

36.  cos (3x + 1) sin (3x + 1) dx

37.  ∫ (x2 + 1)3 x2 dx

38.  ∫ (x4 – 1) x2 dx

 

Penyelesaian

23.  ∫ (3x + 1)4 3 dx

Jika u = (3x + 1), maka du = 3 dx;

= ∫ u4 du

= 1/5 u5 + c

= 1/5 (3x + 1)5 + c

 

24.  ∫ (x2 – 4)3 2x dx

Jika u = (x2 – 4), maka du = 2x dx;

= ∫ u3 du

= 1/4 u4 + c

= 1/4 (x2 – 4)4 + c

 

25.  ∫ (5x3 – 18)7 15x2 dx

Jika u = (5x3 – 18), maka du = 15x2 dx;

= ∫ u7 du

= 1/8 u8 + c

= 1/8 (5x3 – 18)8 + c

 

26.  ∫ (x2 – 3x + 2)2 (2x – 3) dx

Jika u = (x2 – 3x + 2), maka du = 2x – 3 dx;

= ∫ u2 du

= 1/3 u3 + c

= 1/3 (x2 – 3x + 2)3 + c

 

27.  ∫ 3x4 (2x5 + 9)3 dx

Jika u = (2x5 + 9), maka du = 10x4 dx;

= 3/10 ∫ u3 du

= 3/40 u4 + c

= 3/40 (2x5 + 9)4 + c

 

28.  ∫ 3x √(3x2 + 7) dx

Jika u = (3x2 + 7), maka du = 6x dx;

= 1/2 ∫ u1/2 du

= 1/(2×3/2) u3/2 + c

= 1/3 √((3x2 + 7)3) + c

 

29.  ∫ (5x2 + 1) (5x3 + 3x – 8)6 dx

Jika u = (5x3 + 3x – 8), maka du = 15x2 + 3 dx;

=1/3 ∫ u6 du

= 1/(3×7) u7 + c

= 1/21 (5x3 + 3x – 8)7 + c

 

30.  ∫ (5x2 + 1) √(5x3 + 3x – 2) dx

Jika u = (5x3 + 3x – 2), maka du = 15x2 + 3 dx;

= 1/3 ∫ u1/2 du

= 1/(3×3/2) u3/2 + c

= 2/9 √((5x3 + 3x – 2)3) + c

 

31.  ∫ 3t (2t2 – 11) dt

Jika u = (2t2 – 11), maka du = 4t dt;

= 3/4 ∫ u1/3 du

= 3/(4×4/3) u4/3 + c

= 9/16 ((2t2 – 11)4) + c

 

32.  ∫ 3y/√(2y2 + 5) dy

Jika u = (2y2 + 5), maka du = 4y dy;

= 3/4 ∫ u–1/2 du

= 3/(4×1/2) u1/2 + c

= 3/2 √(2y2 + 5) +c

 

33.  sin4 x cos x dx

Jika u = sin x, maka du = cos x dx;

= ∫ u4 du

= 1/5 u5 + c

= 1/5 sin5 + c

 

34.  ∫ (cos4 2x) (–2 sin 2x) dx

Jika u = cos 2x, maka du = –2 sin 2x dx;

= ∫ u4 du

= 1/5 u5 + c

= 1/5 cos5 2x + c

 

35.  ∫ (sin5 x2) (x cos x2) dx

Jika u = sin x2, maka du = 2x cos x2 dx;

= 1/2 ∫ u5 du

= 1/(2×6) u6 + c

= 1/12 sin6 x2 + c

 

36.  cos (3x + 1) sin (3x + 1) dx

Jika u = cos (3x + 1), maka du = –3 sin (3x + 1) dx;

= –1/3 ∫ u du

= – 1/(3×2) u2 + c

= –1/6 cos2 (3x + 1) + c

 

37.  ∫ (x2 + 1)3 x2 dx

= c

 

38.  ∫ (x4 – 1) x2 dx

= ∫ x6x2 dx

= 1/7 x7 – 1/3 x3 + c

 

Dalam Soal-soal 39 – 44, f’’(x) diketahui. Cari f(x) melalui anti penurunan dua kali. Perhatikan bahwa dalam kasus ini jawab anda harus mengandung dua konstanta sebarang, dari masing-masing anti penurunan satu. Misalnya, jika f’’(x) = x, maka f’(x) = x2/2 + C1 dan f(x) = x3/6 + C1x + C2. Konstanta C1 dan C2 tidak dapat digabungkan.

39.  f’’(x) = 3x + 1

40.  f’’(x) = –2x + 3

41.  f’’(x) = √x

42.  f’’(x) = x4/3

43.  f’’(x) = (x4 + 1)/x3

44.  f’’(x) = 2 (x + 1)

 

Penyelesaian

39.  f’’(x) = 3x + 1

f’(x) = 3/2 x2 + 1/1 x + C1

f’(x) = 3/2 x2 + x + C1

f(x) = 3/(2×3) x3 + 1/2 x2 + C1 + C2

f(x) = 1/2 x3 + 1/2 x2 + C1 + C2

 

40.  f’’(x) = –2x + 3

f'(x) = –2/2 x2 + 3/1 x + C1

f'(x) = –x2 + 3x + C1

f(x) = –1/3 x3 + 3/2 x2 + C1 + C2

 

41.  f’’(x) = √x

f'(x) = 1/(3/2) x3/2 + C­

f'(x) = 2/3 x3/2 + C1

f(x) = 2/(3×5/2) x5/2 + C1 + C2

f(x) = 4/15 x5/2 + C1 + C2

 

42.  f’’(x) = x4/3

f'(x) = 1/(7/3) x7/3 + C1

f'(x) = 3/7 x7/3 + C1

f(x) = 3/(7×10/3) x10/3 + C1 + C2

f(x) = 9/70 x10/3 + C1 + C2

 

43.  f’’(x) = (x4 + 1)/x3

f’’(x) = x + x-3

f’(x) = 1/2 x2 + 1/(–2) x–2 + C1

f’(x) = 1/2 x2 – 1/(2x2) + C1

f(x) = 1/(2×3) x3 – 1/(2×(–1)) x–1 + C1 + C2

f(x) = 1/6 x3 + 1/2x + C1 + C2

 

44.  f’’(x) = 2 (x + 1)

f'(x) = 2/(4/3) (x + 1)4/3 + C1

f'(x) = 3/2 (x + 1)4/3 + C1

f(x) = 3/(2×7/3) (x + 1)7/3 + C1 + C2

f(x) = 9/14 (x + 1)7/3 + C1 + C2

 

Soal-Soal 5.6

Dalam Soal 1 14, gunakan Teorema Dasar Kalkulus untuk menghitung tiap integral tentu.

1.     02 x3 dx

2.     -12 x4 dx

3.     -12 (3x2 – 2x + 3) dx

4.     12 (4x3 + 7) dx

5.     14 1/w2 dw

6.     13 2/t3 dt

7.     04 √t dt

8.     18 w dw

9.     -4-2 (y2 + 1/y3) dy

10.  14 (s4 – 8)/s2 ds

11.  0(π/2) cos x dx

12.  (π/6)(π/2) 2 sin t dt

13.  01 (2x4 – 3x2 + 5) dx

14.  01 (x4/3 – 2x1/3) dx

 

Penyelesaian

1.     02 x3 dx

= [1/4 x4]2

= 1/4 (2)4

= 16/4

= 4

 

2.     –12 x4 dx

= [1/5 x5]2 – [1/5 x5]–1

= 25/5 – (–1)5/5

= (32+1)/5

= 33/5

 

3.     –12 (3x2 – 2x + 3) dx

= [3/3 x3 – 2/2 x2 + 3/1 x]2 – [3/3 x3 – 2/2 x2 + 3/1 x]–1

= [x3x2 + 3x]2 – [x3x2 + 3x]–1

= [23 – 22 + 3(2)] – [(–1)3 – (–1)2 + 3(–1)]

= [8 – 4 + 6] – [(–1) – 1 – 3]

= 10 + 5

= 15

 

4.     12 (4x3 + 7) dx

= [4/4 x4 + 7/1 x]2 – [4/4 x4 + 7/1 x]1

= [x4 + 7x]2 – [x4 + 7x]1

= [24 + 7(2)] – [14 + 7(1)]

= [16 + 14] – [1 + 7]

= 30 – 8

= 22

 

5.     14 1/w2 dw

= 14 w–2 dw

= [1/(–1) w–1]4 – [1/(–1) w–1]1

= [–w–1]4 – [–w–1]1

= [–1/(4)] – [–1/1]

= 3/4

 

6.     13 2/t3 dt

= 13 2t-3 dt

= [2/(–2) t–2]3 – [2/(–2) t–2]1

= [–t–2]3 – [–t–2]3

= –1/32 – (–1/12)

= –1/9 + 9/9

= 8/9

 

7.     04t dt

= 04 t1/2 dt

= [–1/(3/2) t3/2]4 – [–1/(3/2) t3/2]0

= [–2/3 t3/2]4 – [–2/3 t3/2]0

= 2/3 √(43)

= 2/3 (8)

= 16/3

 

8.     18 w dw

= 18 w1/3 dw

= [1/(4/3) w4/3]8 – [1/(4/3) w4/3]1

= [3/4 w4/3]8 – [3/4 w4/3]1

= 3/4 (84) – 3/4 (14)

= (48 – 3)/4

= 45/4

 

9.     –4–2 (y2 + 1/y3) dy

= –4–2 (y2 + y–3) dy

= [1/3 y3 + (–1/2) y–2]–2 – [1/3 y3 + (–1/2) y–2]–4

= [1/3 (–2)3 + (–1/(2(–2)2))] – [1/3 (–4)3 + (–1/(2(–4)2))]

= [–8/3 – 1/8] – [–64/3 + (–1/32)]

= (–64 – 3)/24 + (2048 + 3)/96

= (–268)/96 + 2051/96

= 1783/96

 

10.  14 (s4 – 8)/s2 ds

= 14 s2 – 8s–2 ds

= [1/3 s3 – (8/(–1)) s–1]4 – [1/3 s3 – (8/(–1)) s–1]1

= [1/3 (4)3 + 8/4] – [1/3 (1)3 + 8/1]

= [64/3 + 8/4] – [(1 + 24)/3]

= (256 + 24)/12 – 100/12

= 180/12

= 15

 

11.  0π/2 cos x dx

= [sin x]90 – [sin x]0

= sin(90) – sin(0)

= 1

 

12.  π/6π/2 2 sin t dt

= [–2 cos t]90 – [–2 cos t]30

= –2 cos (90) + 2 cos (30)

= –2(0) + 2(√3/2)

= √3

 

13.  01 (2x4 – 3x2 + 5) dx

= [2/5 x5 – 3/3 x3 + 5/1 x]1 – [2/5 x5 – 3/3 x3 + 5/1 x]0

= 2/5 (1)5 – (1)3 + 5(1)

= (2 – 5 + 25)/5

= 22/5

 

14.  01 (x4/3 – 2x1/3) dx

= [1/(7/3) x7/3 – 2/(4/3) x4/3]1 – [1/(7/3) x7/3 – 2/(4/3) x4/3]0

= 3/7 (1) 7/3 – 3/2 (1)4/3

= (6 – 21)/14

= –15/14

 

Dalam Soal 15 30,  gunakan Teorema Dasar Kalkulus dikombinasikan dengan Aturan Pangkat Diperumum untuk menghitung integral tentu yang diberikan (lihat Contoh 7 10).

15.  01 (x2 + 1)10 (2x) dx

16.  -10 √(x3 + 1) (3x2) dx

17.  -13 1/(t + 2)2 dt

18.  210 √(y – 1) dy

19.  58 √(3x + 1) dx

20.  17 1/√(2x + 2) dx

21.  -33 √(7 + 2t2) (8t) dt

22.  13 (x2 + 1)/ √(x3 + 3x) dx

23.  0π/2 cos2 x sin x dx

24.  0π/2 sin2 3x cos 3x dx

25.  0π/2 (2x + sin x) dx

26.  0π/2 [4x + 3 + cos x) dx

27.  04 [√x √(2x + 1)] dx

28.  -4-1 (1 – s4)/2s2 ds

29.  01 (x2 + 2x)2 dx

30.  08a (a1/3x1/3)3 dx

 

Penyelesaian

15.  01 (x2 + 1)10 (2x) dx

Jika u = (x2 + 1), maka du = 2x dx;

= 01 u10 du

= [1/11 (x2 + 1)11]1 – [1/11 (x2 + 1)11]0

= 1/11 [12 + 1]11

= 2048/11

 

16.  –10 √(x3 + 1)(3x2) dx

Jika u = (x3 + 1), maka du = 3x2 dx;

= –10 u1/2 du

= [1/(3/2) (x3 + 1)3/2]0 – [1/(3/2) (x3 + 1)3/2]–1

= 2/3 √([(03 + 1)]3) – 2/3 √([(–1)3 + 1]3

= 2/3(1) – 2/3(0)

= 2/3

 

17.  –13 1/(t + 2)2 dt

Jika u = (t + 2), maka du = dt;

= –13 u-2 du

= [1/(–1) (t + 2)–1]3 – [1/(–1) (t + 2)–1]–1

= –1/((3 + 2)) – 1/((–1 + 2))

= –1/5 + 1

= 4/5

 

18.  210 √(y – 1) dy

Jika u = (y – 1), maka du = dy;

= 210 u1/2 du

= [1/(3/2) (y – 1)3/2]10 – [1/(3/2) (y – 1)3/2]2

= 2/3 √((10 – 1)3) – 2/3 √((2 – 1)3)

= 2/3(27) – 2/3(1)

= 52/3

 

19.  58 √(3x + 1) dx

Jika u = (3x + 1), maka du = 3 dx;

= 1/3 58 u1/2 du

= [1/(3×3/2) (3x + 1)3/2]8 – [1/(3×3/2) (3x + 1)3/2]5

= 2/9 √([3(8) + 1]3) – 2/9 √([3(5) + 1]3)

= 2/9(125) – 2/9(64)

= (250 – 128)/9

= 122/9

 

20.  17 1/√(2x + 2) dx

Jika u = 2x + 2, maka du = 2 dx;

= 1/2 17 u–1/2 du

= [1/(2×1/2) (2x + 2)1/2]7 – [1/(2×1/2) (2x + 2)1/2]1

= √(2(7) + 2) – √(2(1) + 2)

= 4 – 2

= 2

 

21.  –33 √(7 + 2t2)(8t) dt

Jika u = (7 + 2t2), maka du = 4t dt

= 2 ∫ u1/2 du

= [2/(3/2) (7 + 2t2)3/2]3 – [2/(3/2) (7 + 2t2)3/2]–3

= 4/3 √([7 + 2(3)2]3) – 4/3 √([7 + 2(–3)2]3)

= 4/3(125) – 4/3(125)

= 0

 

22.  13 (x2 + 1)/√(x3 + 3x) dx

Jika u = (x3 + 3x), maka du = (3x2 + 3) dx

= 1/3 13 u–1/2 du

= [1/(3×1/2) (x3 + 3x) 1/2]3 – [1/(3×1/2) (x3 + 3x) 1/2]1

= 2/3 √(33 + 3(3)) – 2/3 √(13 + 3(1))

= 2/3(6) – 2/3(2)

= 8/3

 

23.  0π/2 cos2 x sin x dx

Jika u = cos x, maka du = –sin x dx

= – 090 u2 du

= [–1/3 cos3 x]90 – [–1/3 cos3 x]0

= –1/3 cos3 (90) + 1/3 cos3 (0)

= –1/3(0) + 1/3(1)

= 1/3

 

24.  0π/2 sin2 3x cos 3x dx

Jika u = sin 3x, maka du = 3 cos 3x dx;

= 1/3 0π/2 u2 du

= [1/(3×3) sin3 3x]90 – [1/(3×3) sin3 3x]0

= 1/9 sin3 3(90) – 1/9 sin3 3(0)

= 1/9(–1) – 1/9(0)

= –1/9

 

25.  0π/2 (2x + sin x) dx

= [2/2 x2 + (–cos x)]90 – [2/2 x2 + (–cos x)]0

= [x2cos x)]90 – [x2cos x)]0

= [(90)2cos (90)] – [ (0)2cos (0)]

= (8100 – 0) – (0 – 1)

= 8100 + 1

= 8101

 

26.  0π/2 [4x + 3 + cos x] dx

= [4/2 x2 + 3/1 x + sin x]90 – [4/2 x2 + 3/1 x + sin x]0

= [2x2 + 3x + sin x]90 – [2x2 + 3x + sin x]0

= [2(90)2 + 3(90) + sin (90)] – [2(0)2 + 3(0) + sin (0)]

= (16200 + 270 + 1) – (0 + 0 + 0)

= 16471

 

27.  04 [√x + √(2x + 1)] dx

Jika u = x, maka du = dx dan jika v = (2x + 1), maka dv = 2 dx;

= 04 u1/2 du + 1/2 04 v1/2 dv

= [1/(3/2) x3/2 + 1/(2×3/2) (2x + 1)3/2]4 – [1/(3/2) x3/2 + 1/(2×3/2) (2x + 1)3/2]0

= [2/3 √(x3) + 1/3 √((2x + 1)3)]4 – [2/3 √(x3) + 1/3 √((2x + 1)3)]0

= [2/3 √((4)3) + 1/3 √((2(4) + 1)3)] – [2/3 √((0)3) + 2/3 √((2(0) + 1)3)]

= [2/3 (8) + 1/3 (27)] – [0 + 2/3]

= (16 + 27 – 2)/3

= 41

 

28.  –41 (1 – s4)/(2s2) ds

= –41 1/2(s–2 – s2) ds

= [1/(2(–1)) s–1 – 1/2(3) s3]–1 – [ 1/(2(–1)) s–1 – 1/2(3) s3]–4

= [–1/2ss3/6]–1 – [–1/2ss3/6]–4

= [–1/2(–1) – ((–1)3)/6] – [(–1/2(–4) – ((–4)3)/6)]

= [1/2 + 1/6] – [1/8 + 64/6]

= (12 + 4 – 3 – 256)/24

= –243/24

= –81/8

 

29.  01 (x2 + 2x)2 dx

= 01 x4 + 4x3 + 4x2 dx

= [1/5 x5 + 4/4 x4 + 4/3 x3]1 – [1/5 x5 + 4/4 x4 + 4/3 x3]0

= 1/5 (1)5 + (1)4 + 4/3 (1)3

= (3 + 15 + 20)/15

= 38/15

 

30.  a8a (a1/3x1/3)3 dx
= a8a (a – 3a2/3 x1/3 + 3a1/3 x2/3 x) dx

= [ax – 9/4 x4/3 a2/3 + 9/5 a1/3 x5/3 – 1/2 x2]8a – [ax – 9/4 x4/3 a2/3 + 9/5 a1/3 x5/3 – 1/2 x2]a

= [a(8a) – 9/4 (8a)4/3 a2/3 + 9/5 a1/3 (8a)5/3 – 1/2 (8a)2] – [a(a) – 9/4 (a)4/3 a2/3 + 9/5 a1/3 (a)5/3) – 1/2 (a)2]

= – 49/20 a2

 

Soal-Soal 5.8

Gunakan metode penggantian untuk mencari integral tak-tentu berikut.

1.     ∫ √(3x + 2) dx

2.     (2x – 4) dx

3.     cos(3x + 2) dx

4.     sin(2x – 4) dx

5.     x √(x2 + 4) dx

6.     x2(x3 + 5)9 dx

7.     x sin(x2 + 4) dx

8.     x2 cos(x3 + 5) dx

9.     ∫ (x sin√(x2 + 4))/ √(x2 + 4) dx

10.  x2(x3 + 5) cos[(x3 + 5)9] dx

11.  x cos(x2 + 4) √(sin(x2 + 4)) dx

12.  x2 sin(x3 + 5) cos9(x3 + 5) dx

13.  ∫ ((√t + 4)3)/ √t dx

14.  ∫ (1 + 1/t)-2 (1/t2) dt

 

Penyelesaian

1. ∫ √(3x + 2) dx

Jika u = (3x + 2), maka du = 3 dx

= 1/3 ∫ u(1/2) du
= 1/(3×3/2) (3x + 2)(3/2) + c
= 2/9 √((3x + 2)3) + c

 

2. ∫ (2x – 4) dx

Jika u = (2x – 4), maka du = 2 dx

= 1/2 ∫ u(1/3) du

= 1/(2×4/3) (2x – 4)(4/3) + c

= 3/8 ((2x – 4)4) + c

 

3. ∫ cos(3x + 2) dx

Jika u = 3x + 2, maka du = 3 dx

= 1/3 ∫ cos u du

= 1/3 sin(3x + 2) + c

 

4. sin(2x – 4) dx

Jika u = 2x – 4, maka du = 2 dx

= 1/2 ∫ sin u du

= – 1/2 cos(2x – 4) + c

 

5. ∫ x √(x2 + 4) dx

Jika u = x2 + 4, maka du = 2x dx

= 1/2 ∫ u(1/2) du
= 1/(2×3/2) (
x2 + 4)(3/2) + c

= 1/3 √((x2 + 4)3) + c

 

6. ∫ x2 (x3 + 5)9 dx

Jika u = x3 + 5, maka du = 3x2 dx

= 1/3 ∫ u9 du
= 1/(3×10) (
x3 + 5)10 + c
= 1/30 (
x3 + 5)10 + c

 

7. ∫ x sin(x2 + 4) dx

Jika u = x2 + 4, maka du = 2x dx;

= 1/2 ∫ sin u du

= – 1/2 cos (x2 + 4) + c

 

8. ∫ x2 cos(x3 + 5) dx

Jika u = x3 + 5, maka du = 3x2 dx;

= 1/3 ∫ cos u du

= 1/3 sin(x3 + 5) + c

 

9. ∫ (x sin√(x2 + 4))/√(x2 + 4) dx

Jika u = (x2 + 4)(1/2), maka du = (x)(x2 + 4)(–1/2) dx

= ∫ sin u du

= – cos √(x2 + 4) + c

 

10. ∫ x2 (x3 + 5)8 cos[(x3 + 5)9] dx

Jika u = (x3 + 5)9, maka du = 27x2 (x3 + 5)8 dx;

= 1/27 ∫ cos u du

= 1/27 sin[(x3 + 5)9] + c

 

11. ∫ x cos(x2 + 4) √(sin(x2 + 4)) dx

Jika u = sin(x2 + 4), maka du = 2x cos(x2 + 4) dx;

= 1/2 ∫ u(1/2) du

= – 1/(2×3/2) sin(x2 + 4)(3/2) + c

= – 1/3 √(sin(x2 + 4)3) + c

 

12. ∫ x2 sin(x3 + 5) cos9 (x3 + 5) dx

Jika u = cos(x3 + 5), maka du = – 3x2 sin(x3 + 5) dx;

= –1/3 ∫ u9 du

= –1/(3×10) cos10 (x3 + 5) + c

= –1/30 cos10 (x3 + 5) + c

 

13. ∫ (√t + 4)3/√t dt

Jika u = t(1/2) + 4, maka du = 1/2 t(–1/2) dt

= 2 ∫ u3 du

= 2/4 (t(1/2) + 4)4 + c

= 1/2 (t(1/2) + 4)4 + c

 

14. ∫ (1+1/t)(–2) (1/t2) dt

Jika u = 1 + t(–1) maka du = – t(–2) dt;

= – ∫ u^(–2) du

= –1/(–1) (1 + t(–1))( –1) + c

= 1/((1+1/t)) + c

 

Gunakan metode penggantian dalam integral tentu untuk menghitung masing-masing yang berikut (lihat Contoh 3 dan 4)

15.  01 (3x + 1)3 dx

16.  04 √(2t + 1) dt

17.  02 t/√(t2 + 9)2 dt

18.  0√5 √(9 – x2) x dx

19.  01 (x + 2)/(x2 + 4x + 1)2 dx

20.  02 x2/ (9 – x3)3/2 dx

21.  0π/6 sin3 θ cos θ dθ

22.  0π/6 sin θ/ cos3 θ dθ

23.  01 cos(3x – 3) dx

24.  01/2 sin(2πx) dx

25.  01 x sinx2) dx

26.  0π/4 (cos 2x + sin 2x) dx

27.  0π/2 sin x sin(cos x) dx

28.  01 x cos3(x2) sin(x2) dx

29.  14 1/ √ t(√t + 1)3 dt

30.  12 (1 + 1/t)2 (1/t2) dt

 

Penyelesaian

15. 01 (3x + 1)3 dx

Jika u = (3x + 1) maka du = 3 dx;

= 1/3 01 u3 du

= [1/(3×4) (3x + 1)4]1 – [1/(3×4) (3x + 1)4]0

= 1/12 ([3(1) + 1]4 – [3(0) + 1]4)

= 1/12 (256 – 1)

= 255/12 = 85/4

 

16. 04 √(2t + 1) dt

Jika u = (2t + 1) maka du = 2 dt;

= 1/2 04 u(1/2) du

= [1/(2×3/2) (2t + 1)(3/2)]4 – [1/(2×3/2) (2t + 1)(3/2)]0

= 1/3 (√((2(4) + 1)3) – √((2(0) + 1)3))

= 1/3(27 – 1)

= 26/3

 

17. 02 t/(t2 + 9)2 dt

Jika u = (t2 + 9) maka du = 2t dt;

= 1/2 02 u(–2) du

= [1/(2×(–1)) (t2 + 9)(-1)]2­ – [1/(2×(–1)) (t2 + 9)(-1)]0
= –1/2 (1/[(2)2
+ 9] – 1/[(0)2 + 9])
= –1/2 (1/13 – 1/9)
= (–9 + 13)/234

= 4/234 = 2/117

 

18. 0(√5) √(9 – x2) x dx

Jika u = (9 – x2) maka du = – 2x dx;

= –1/2 0(√5) u(1/2) du

= [–1/(2×3/2) (9 – x2)(3/2)]√5 – [–1/(2×3/2) (9 – x2)(3/2)]0

= –1/3 (√([9 – (√5)2]3) – √([9 – (0)2]3))

= –1/3 (8 – 27)

= 19/3

 

19. 01 (x + 2)/(x2 + 4x + 1)2 dx

Jika u = (x2 + 4x + 1) maka du = (2x + 4) dx;

= 1/2 01 u(-2) du

= [1/(2×(–1)) (x2 + 4x + 1)(–1)]1 – [1/(2×(–1)) (x2 + 4x + 1)(–1)]0

= –1/2 (1/[(1)2 + 4(1) + 1] – 1/[(0)2 + 4(0) + 1] )

= –1/2 (1/6 –1/1)

= (–1 + 6)/12

= 5/12

 

20. 02 x2/(9 – x3)(3/2) dx

Jika u = (9 – x3) maka du = – 3x2 dx;

= –1/3 02 u(–3/2) du
= [–1/(3×(–1/2)) (9 – x3)(–1/2)2 – [–1/(3×(–1/2)) (9 – x3)(–1/2)0
= 2/3 (1/√(9 – (2)3) – 1/√(9 –
(0)3))
= 2/3 (1 – 1/3)
= (6 – 2)/9
= 4/9

 

21. 0(π/6) sin3 θ cos θ dθ

Jika u = sin θ maka du = cos θ dx;

= 0(π/6) u3 du
= [1/4 (sin
θ)4](π/6) – [1/4 (sin θ)4]0
= 1/4 (sin4 (
π/6) – sin4 (0))
= 1/4 (1/16 – 0)
= 1/64

 

22. 0(π/6) sin θ/cos3 θ dθ

Jika u = cos θ maka du = – sin θ dθ;

= – 0(π/6) u(–3) du
= [–1/2 (cos
θ)(-2)](π/6) – [–1/2 (cos θ)(–2)]0
= –1/2 (1/cos2 (
π/6) – 1/cos2 0)
= –1/2 (1/(3/4) – 1/1)
= (–4 + 4)/6

= –1/6

 

23. 01 cos(3x – 3) dx

Jika u = 3x – 3 maka du = 3 dx;

= 1/3 01 cos u du
= [1/3 sin(3x – 3)]1 – [1/3 sin(3x – 3)]0
= 1/3 (sin[3(1) 3] – sin[3(0) – 3])
= sin(3)/3

 

24. 0(1/2) sin (2πx) dx

Jika u = 2πx maka du = 2π dx;

= 1/2π 0(1/2) sin u du
= [–1/2
π cos 2πx](1/2) – [–1/2π cos 2πx]0
= –1/2
π (cos 2π(1/2) – cos 2π(0))
= –1/2
π(–1–1)

= 1/π

 

25. 01 x sin(πx2) dx

Jika u = πx2 maka du = 2πx dx;

= 1/2π 01 sin u du
= [–1/2
π cos πx2]1 – [–1/2π cos πx2]0
= –1/2
π (cos π(1)2cos π(0)2)
= –1/2
π(–1–1)

= 1/π

 

26. 0(π/4) (cos 2x + sin 2x) dx

Jika u = 2x maka du = 2 dx;

= 1/2 (0(π/4) cos u du + 0(π/4) sin u du)
= [1/2 (sin 2xcos 2x)](
π/4) – [1/2 (sin 2xcos 2x)](π/4)
= 1/2 ([sin 2(
π/4) – cos 2(π/4)] – [sin 2(0) – cos 2(0)])
= 1/2 ([1 – 0] – [0 – 1])

= 1/2 + 1/2
= 1

 

27. 0(π/2) sin x sin (cos x) dx

Jika u = cos x maka du = – sin x dx;

= – 0(π/2) sin u du
= [cos(cos x)](π/2) – [cos(cos x)]0
= cos [cos (π/2) – cos (0)]

= cos (0 – 1)

= 1 – cos (1)

28. 01 x cos3 (x2) sin(x2) dx

Jika u = cos(x2) maka du = –2x sin (x2) dx;

= –1/2 01 u3 du
= [–1/(2×4) cos4 (x2)]1 – [–1/(2×4) cos4 (x2)]0
= –1/8 (cos4 ([1]2) – cos4 ([0]2))

= – (cos4 (1)/8 – 1/8)

 

29. 14 1/(√t (√t + 1)3) dt

Jika u = (t(1/2) + 1) maka du = 1/2 t(–1/2) dt;

= 2 14 u(–3) du
= [2/(–2) (t(1/2) + 1)(–2)]4 – [2/(–2) (t(1/2) + 1)(–2)]1
= –1/(√4 + 1)2 + 1/(√1 + 1)2

= –1/9 + 1/4

= (–4 + 9)/36

= 5/36

 

30. 12 (1 + 1/t)2 (1/t2) dt

Jika u = (1 + t(–1)), maka du = –t(–2) dt;

= –12 u2 du
= [–1/3 (1 + t(–1))3]2 – [–1/3 (1 + t(–1))3]1
= –1/3 ((1 + 1/([2]))3 + (1 + 1/([1]))3)

= –1/3 (27/8 + 8)

= (–27 + 64)/24

= –37/24

 

Dalam Soal 31 – 38, gunakan simetri untuk membantu anda menghitung integral yang diberikan

31.  ππ (sin x + cos x) dx

32.  11 x3/ (1 + x2)4 dx

33.  π/2π/2 sin x/ (1 + cos x) dx

34.  ππ x2 cos(x3) dx

35.  ππ (sin x + cos x)2 dx

 

Penyelesaian

31. (–π)π (sin x + cos x) dx

= [–cos x + sin x]π – [cos x + sin x]π

= (–cos π + sin π) – (–cos (–π) + sin (–π))

= (–(–1) + 0) – (– (–1) + 0)

= 1 – 1

= 0

 

32. (–1)1 x3/(1 + x2)4 dx

Jika u = (1 + x2), maka du = 2x dx;

= 1/2 (–1)1 (u – 1) u(–4) du

= [1/2 (1/(–2) u(–2) – 1/(–3) u(–3))]1 – [1/2 (1/(–2) u(–2) – 1/(–3) u(–3))] –1

= (–1/2 [1/(2(1)2) – 1/(3(1)3)]) – (–1/2 [1/(2(–1)2) – 1/(3(–1)3)])

= (–1/4 + 1/6) – (–1/4 + 1/6)

= (3 + 2 + 3 – 2)/12

= 0

 

33. (–π/2)(π/2) sin x/(1 + cos x) dx

Jika u = (1 + cos x), maka du = – sin x dx;

= –(–π/2)(π/2) u(–1) du
= [ln|u|](
π/2) – [ln|u|](–π/2)
= ln |1 + cos (
π/2) | – ln |1 + cos (–π/2)|
= ln |1 + 0| – ln |1 + 0|
= 0

 

34. (–π)(π) x2 cos (x3) dx

Jika u = x3, maka du = 3x2 dx;

= 1/3 (–π)(π) cos u du

= [1/3 sin x3](π) – [1/3 sin x3](–π)

= (1/3 sin ([π]3)) – (1/3 sin ([–π]3))

= (1/3 (0)) (1/3 (0))

= 0

 

35. (–π)π (sin x + cos x)2 dx

= (–π)π 1 + sin 2x dx

= [x – 1/2 cos 2x](π) – [x – 1/2 cos 2x](–π)

= ((π) – 1/2 cos 2(π)) – ((–π) – 1/2 cos 2(–π))

= ((π) 1/2) ((π) + 1/2)

= 2π

 

 


Comments

Popular Posts