Kumpulan Soal-soal Bab 5 Integral Beserta Jawaban Buku Kalkulus dan Geometri Analisis Jilid 1 Edisi Keempat
Soal-Soal 5.1
Carilah
anti turunan F(x) + C yang umum untuk Soal-soal 1
– 14.
1. f
(x)
= 4
2. f
(x)
= 2x – 4
3. f
(x) = 3x2 + √2
4. f
(x) = 5x4 + π
5. f
(x) = x2/3
6. f
(x) = x–3/4
7. f
(x) = 6x2 – 6x + 1
8. f
(x) = 3x2 + 10x – 7
9. f
(x)
= 18x8 – 25x4 + 3x2
10. f
(x) = x2(20x7 – 7x4
+ 6)
11. f
(x)
= 4/x5 – 3/x4
12. f
(x)
= 1/x3 + 6/x7
13. f
(x)
= (4x6 + 3x5 – 8)/x5
14. f
(x)
= (2x3 – 3x2 + 1)/x2
Penyelesaian
1.
f(x) = 4
= ∫ 4 dx
= 4/1 x + c
= 4x + c
2.
f(x) = 2x – 4
= ∫ (2x – 4) dx
= 2/2 x2 – 4/1 x
+ c
= x2 – 4x + c
3.
f(x) = 3x2
+ √2
= ∫ (3x2 + √2) dx
= 3/3 x3 + √2/1 x
+ c
= x3 + √2x + c
4.
f(x) = 5x4
+ π
= ∫ (5x4 + π) dx
= 5/5 x5 + 1/1 πx
+ c
= x5 + πx + c
5.
f(x) = x2/3
= ∫ x(2/3) dx
= 1/(5/3) x5/3 + c
= 3/5 x5/3 + c
6.
f(x) = x–3/4
= ∫ x–3/4 dx
= 1/(1/4) x1/4 + c
= 4x1/4 + c
7.
f(x) = 6x2
– 6x + 1
= ∫ (6x2 – 6x +
1) dx
= 6/3 x3 – 6/2 x2
+ 1/1 x + c
= 2x3 – 3x2 + x + c
8.
f(x) = 3x2
+ 10x – 7
= ∫ (3x2 + 10x –
7) dx
= 3/3x3 + 10/2x2
– 7/1x + c
= x3 + 5x2 – 7x + c
9.
f(x) = 18x8
– 25x4 + 3x2
= ∫ (18x8 – 25x4
+ 3x2) dx
= 18/9 x9 – 25/5 x5
+ 3/3 x3 + c
= 2x9 – 5x5 + x3
+ c
10. f(x)
= x2 (20x7 – 7x4 + 6)
= ∫ (20x9 – 7x6
+ 6x2) dx
= 20/10 x10 – 7/7 x7
+ 6/3 x3 + c
= 2x10 – x7 + 2x3
+ c
11. f(x)
= 4/x5 – 3/x4
= ∫ (4x–5 – 3x–4)
dx
= 4/(–4) x-4 – 3/(–3) x-3
+ c
= –1/x4 + 1/x3 + c
12. f(x)
= 1/x3 + 6/x7
= ∫ (x–3 + 6x–7)
dx
= 1/(–2) x–2 + 6/(–6) x–6
+ c
= –1/2 x2 – 1/x6 + c
13. f(x)
= (4x6 + 3x5 – 8)/x5
= ∫ (4x + 3 – 8x–5)
dx
= 4/2 x2 + 3/1 x
– 8/(–4) x–4 + c
= 2x2 + 3x + 2x-4
+ c
= 2x2 + 3x + 2/x4 + c
14. f(x)
= (2x3 – 3x2 + 1)/x2
= ∫ (2x – 3 + x-2)
dx
= 2/2 x2 – 3/1 x
+ 1/(–1) x–1 + c
= x2 – 3x – 1/x + c
Dalam
Soal-soal 15 - 22, carilah integral tak tentunya.
15. ∫
(x3 + √x) dx
16. ∫
(x2 + 1)2 dx
17. ∫
(y2 + 4y)2 dy
18. ∫
y2(y2 – 3) dy
19. ∫
(x4 – 2x3 + 1) dx
20. ∫
(x3 – 3x2 + 1)/√x dx
21. ∫
(3 sin t – 2 cos t) dt
22. ∫
(3t2 – 2 sin t) dt
Penyelesaian
15. ∫
(x3 + √x) dx
= ∫ (x3 + x1/2)
dx
= 1/4 x4 + 1/(3/2) x3/2
+ c
= 1/4 x4 + 2/3 x3/2 + c
16. ∫ (x2 + 1)2 dx
= ∫ (x4 + 2x2 + 1) dx
= 1/5 x5 + 2/3 x3 + 1/1 x + c
= 1/5 x5 + 2/3 x3 + x + c
17. ∫ (y2 + 4y)2 dy
= ∫ (y4
+ 8y3 + 16y2) dy
= 1/5 y5 + 8/4 y4 + 16/3 y3 + c
= 1/5 y5 + 2y4 + 16/3 y3 + c
18. ∫
(y2
(y2 – 3) dy
= ∫ (y4 – 3y2)
dy
= 1/5 y5 – 3/3y3
+ c
= 1/5 y5 – y3 + c
19. ∫ (∫x4 – 2x3 + 1)/x2 dx
= ∫ (x2 – 2x + x-2) dx
= 1/3 x3 – 2/2 x2 + 1/(–1) x–1 + c
= 1/3 x3 – x2 – 1/x + c
20. ∫ (x3 – 3x2 + 1)/√x dx
= ∫ (x5/2 – 3x3/2 + x–1/2) dx
= 1/(7/2) x7/2 – 3/(5/2) x5/2 + 1/(1/2) x1/2 + c
= 2/7 x7/2 – 6/5 x5/2 +2√x + c
21. ∫
(3 sin t – 2 cos t) dt
= – 3 cos t
– 2 sin t + c
= – (3 cos t + 2 sin t) + c
22. ∫
(3t2 – 2 sin t) dt
= 3/3 t3 – (–2 cos
t) + c
= t3 + 2 cos t + c
Dalam Soal-soal 23 – 38, gunakan metode – metode pada
Contoh 5 dan 6 untuk mencari integral tak-tentu.
23. ∫
(3x + 1)4 3 dx
24. ∫
(x2 – 4)3 2x dx
25. ∫
(5x3 – 18)7 15x2 dx
26. ∫
(x2 – 3x + 2)2 (2x – 3) dx
27. ∫
3x4 (2x5 + 9)3 dx
28. ∫
3x √(3x2 + 7) dx
29. ∫
(5x2 + 1) (5x3 + 3x – 8)6
dx
30. ∫
(5x2 + 1) √(5x3 + 3x – 2) dx
31. ∫
3t ∛(2t2
– 11) dt
32. ∫
3y/√(2y2 + 5) dy
33. ∫
sin4 x cos x dx
34.
∫ (cos4
2x) (–2 sin 2x) dx
35. ∫
(sin5 x2) (x cos x2) dx
36.
∫ cos
(3x + 1) sin (3x + 1) dx
37. ∫
(x2 + 1)3 x2 dx
38. ∫
(x4 – 1) x2 dx
Penyelesaian
23. ∫
(3x + 1)4 3 dx
Jika u = (3x + 1), maka du = 3 dx;
=
∫ u4 du
=
1/5 u5 + c
=
1/5 (3x + 1)5 + c
24. ∫
(x2 – 4)3 2x dx
Jika u = (x2 – 4), maka du
= 2x dx;
=
∫ u3 du
=
1/4 u4 + c
=
1/4 (x2 – 4)4 + c
25. ∫
(5x3 – 18)7 15x2 dx
Jika u
= (5x3 – 18), maka du = 15x2 dx;
=
∫ u7 du
=
1/8 u8 + c
=
1/8 (5x3 – 18)8 + c
26. ∫
(x2 – 3x + 2)2 (2x – 3) dx
Jika u = (x2 – 3x + 2),
maka du = 2x – 3 dx;
=
∫ u2 du
=
1/3 u3 + c
=
1/3 (x2 – 3x + 2)3 + c
27. ∫
3x4 (2x5 + 9)3 dx
Jika u = (2x5 + 9), maka du
= 10x4 dx;
=
3/10 ∫ u3 du
=
3/40 u4 + c
=
3/40 (2x5 + 9)4 + c
28. ∫
3x √(3x2 + 7) dx
Jika u = (3x2 + 7), maka du
= 6x dx;
=
1/2 ∫ u1/2 du
=
1/(2×3/2) u3/2 + c
=
1/3 √((3x2 + 7)3) + c
29. ∫
(5x2 + 1) (5x3 + 3x – 8)6
dx
Jika u = (5x3 + 3x – 8), maka du
= 15x2 + 3 dx;
=1/3
∫ u6 du
=
1/(3×7) u7 + c
=
1/21 (5x3 + 3x – 8)7 + c
30. ∫
(5x2 + 1) √(5x3 + 3x – 2) dx
Jika u = (5x3 + 3x – 2), maka du = 15x2
+ 3 dx;
=
1/3 ∫ u1/2 du
=
1/(3×3/2) u3/2 + c
=
2/9 √((5x3 + 3x – 2)3) + c
31. ∫
3t ∛(2t2
– 11) dt
Jika u = (2t2 – 11), maka du
= 4t dt;
=
3/4 ∫ u1/3 du
=
3/(4×4/3) u4/3 + c
=
9/16 ∛((2t2
– 11)4) + c
32. ∫
3y/√(2y2 + 5) dy
Jika u = (2y2 + 5), maka du
= 4y dy;
=
3/4 ∫ u–1/2 du
=
3/(4×1/2) u1/2 + c
=
3/2 √(2y2 + 5) +c
33. ∫
sin4 x cos x dx
Jika u = sin x, maka du = cos x
dx;
=
∫ u4 du
=
1/5 u5 + c
=
1/5 sin5 + c
34. ∫ (cos4 2x) (–2 sin 2x) dx
Jika u = cos 2x, maka du = –2
sin 2x dx;
=
∫ u4 du
=
1/5 u5 + c
=
1/5 cos5 2x + c
35. ∫
(sin5 x2) (x cos x2)
dx
Jika u = sin x2, maka du
= 2x cos x2 dx;
=
1/2 ∫ u5 du
=
1/(2×6) u6 + c
=
1/12 sin6 x2 + c
36. ∫
cos (3x
+ 1) sin (3x
+ 1) dx
Jika u = cos (3x + 1), maka du
= –3 sin (3x + 1) dx;
=
–1/3 ∫ u du
=
– 1/(3×2) u2 + c
=
–1/6 cos2
(3x
+ 1) + c
37. ∫
(x2 + 1)3 x2 dx
= c
38. ∫
(x4 – 1) x2 dx
= ∫ x6 – x2
dx
= 1/7 x7 – 1/3 x3 + c
Dalam
Soal-soal 39 – 44, f’’(x) diketahui. Cari f(x)
melalui anti penurunan dua kali. Perhatikan
bahwa dalam kasus ini jawab anda harus mengandung dua konstanta sebarang, dari
masing-masing anti penurunan satu. Misalnya, jika f’’(x) = x,
maka f’(x) = x2/2 + C1 dan f(x)
= x3/6 + C1x + C2. Konstanta
C1 dan C2 tidak dapat digabungkan.
39. f’’(x)
= 3x + 1
40. f’’(x)
= –2x + 3
41. f’’(x)
= √x
42. f’’(x)
= x4/3
43. f’’(x)
= (x4 + 1)/x3
44. f’’(x)
= 2 ∛(x + 1)
Penyelesaian
39. f’’(x)
= 3x + 1
f’(x) = 3/2 x2
+ 1/1 x + C1
f’(x) = 3/2 x2
+ x + C1
f(x) = 3/(2×3) x3
+ 1/2 x2 + C1 + C2
f(x) = 1/2 x3 +
1/2 x2 + C1 + C2
40. f’’(x)
= –2x + 3
f'(x) = –2/2 x2
+ 3/1 x + C1
f'(x) = –x2
+ 3x + C1
f(x) = –1/3 x3 +
3/2 x2 + C1 + C2
41. f’’(x)
= √x
f'(x) = 1/(3/2) x3/2
+ C
f'(x) = 2/3 x3/2
+ C1
f(x) = 2/(3×5/2) x5/2
+ C1 + C2
f(x) = 4/15 x5/2
+ C1 + C2
42. f’’(x)
= x4/3
f'(x) = 1/(7/3) x7/3
+ C1
f'(x) = 3/7 x7/3
+ C1
f(x) = 3/(7×10/3)
x10/3 + C1 + C2
f(x) = 9/70 x10/3 +
C1 + C2
43. f’’(x)
= (x4 + 1)/x3
f’’(x) = x +
x-3
f’(x) = 1/2 x2 + 1/(–2) x–2
+ C1
f’(x) = 1/2 x2 – 1/(2x2)
+ C1
f(x) = 1/(2×3) x3
– 1/(2×(–1)) x–1 + C1 + C2
f(x) = 1/6 x3 +
1/2x + C1 + C2
44. f’’(x)
= 2 ∛(x + 1)
f'(x) = 2/(4/3) (x
+ 1)4/3 + C1
f'(x) = 3/2 (x
+ 1)4/3 + C1
f(x) = 3/(2×7/3)
(x + 1)7/3 + C1 + C2
f(x) = 9/14 (x + 1)7/3
+ C1 + C2
Soal-Soal 5.6
Dalam Soal 1 – 14, gunakan Teorema Dasar Kalkulus untuk menghitung tiap
integral tentu.
1. 0∫2
x3 dx
2. -1∫2
x4 dx
3. -1∫2
(3x2 – 2x + 3) dx
4. 1∫2 (4x3
+ 7) dx
5. 1∫4
1/w2 dw
6. 1∫3
2/t3 dt
7. 0∫4
√t dt
8. 1∫8
∛w
dw
9. -4∫-2
(y2 + 1/y3) dy
10. 1∫4
(s4 – 8)/s2 ds
11. 0∫(π/2)
cos x dx
12. (π/6)∫(π/2)
2 sin t dt
13. 0∫1 (2x4
– 3x2 + 5) dx
14. 0∫1 (x4/3
– 2x1/3) dx
Penyelesaian
1. 0∫2
x3 dx
= [1/4 x4]2
= 1/4 (2)4
= 16/4
= 4
2. –1∫2
x4 dx
= [1/5 x5]2
– [1/5 x5]–1
= 25/5 – (–1)5/5
= (32+1)/5
= 33/5
3. –1∫2
(3x2 – 2x + 3) dx
= [3/3 x3 – 2/2 x2
+ 3/1 x]2 – [3/3 x3 – 2/2 x2
+ 3/1 x]–1
= [x3 – x2
+ 3x]2 – [x3 – x2 + 3x]–1
= [23 – 22 + 3(2)]
– [(–1)3 – (–1)2 + 3(–1)]
= [8 – 4 + 6] – [(–1) – 1 – 3]
= 10 + 5
= 15
4. 1∫2
(4x3 + 7) dx
= [4/4 x4 + 7/1 x]2
– [4/4 x4 + 7/1 x]1
= [x4 + 7x]2
– [x4 + 7x]1
= [24 + 7(2)] – [14 + 7(1)]
= [16 + 14] – [1 + 7]
= 30 – 8
= 22
5. 1∫4
1/w2 dw
= 1∫4 w–2
dw
= [1/(–1) w–1]4
– [1/(–1) w–1]1
= [–w–1]4 –
[–w–1]1
= [–1/(4)] – [–1/1]
= 3/4
6. 1∫3
2/t3 dt
= 1∫3 2t-3 dt
= [2/(–2) t–2]3
– [2/(–2) t–2]1
= [–t–2]3 –
[–t–2]3
= –1/32 – (–1/12)
= –1/9 + 9/9
= 8/9
7. 0∫4
√t dt
= 0∫4 t1/2
dt
= [–1/(3/2) t3/2]4
– [–1/(3/2) t3/2]0
= [–2/3 t3/2]4
– [–2/3 t3/2]0
= 2/3 √(43)
= 2/3 (8)
= 16/3
8. 1∫8
∛w
dw
= 1∫8 w1/3
dw
= [1/(4/3) w4/3]8
– [1/(4/3) w4/3]1
= [3/4 w4/3]8
– [3/4 w4/3]1
= 3/4 ∛(84)
– 3/4 ∛(14)
= (48 – 3)/4
= 45/4
9. –4∫–2
(y2 + 1/y3) dy
= –4∫–2 (y2
+ y–3) dy
= [1/3 y3 + (–1/2) y–2]–2
– [1/3 y3 + (–1/2) y–2]–4
= [1/3 (–2)3 + (–1/(2(–2)2))]
– [1/3 (–4)3 + (–1/(2(–4)2))]
= [–8/3 – 1/8] – [–64/3 + (–1/32)]
= (–64 – 3)/24 + (2048 + 3)/96
= (–268)/96 + 2051/96
= 1783/96
10. 1∫4
(s4 – 8)/s2 ds
= 1∫4 s2 – 8s–2
ds
= [1/3 s3 – (8/(–1)) s–1]4
– [1/3 s3 – (8/(–1)) s–1]1
= [1/3 (4)3 + 8/4] – [1/3 (1)3
+ 8/1]
= [64/3 + 8/4] – [(1 + 24)/3]
= (256 + 24)/12 – 100/12
= 180/12
= 15
11. 0∫π/2
cos x dx
= [sin x]90 – [sin
x]0
= sin(90) – sin(0)
= 1
12. π/6∫π/2
2 sin t dt
= [–2 cos t]90 –
[–2 cos t]30
= –2 cos (90) + 2 cos (30)
= –2(0) + 2(√3/2)
= √3
13. 0∫1
(2x4 – 3x2 + 5) dx
= [2/5 x5 – 3/3 x3
+ 5/1 x]1 – [2/5 x5 – 3/3 x3
+ 5/1 x]0
= 2/5 (1)5 – (1)3 +
5(1)
= (2 – 5 + 25)/5
= 22/5
14. 0∫1
(x4/3 – 2x1/3) dx
= [1/(7/3) x7/3 –
2/(4/3) x4/3]1 – [1/(7/3) x7/3 –
2/(4/3) x4/3]0
= 3/7 (1) 7/3 – 3/2
(1)4/3
= (6 – 21)/14
= –15/14
Dalam Soal 15 – 30, gunakan
Teorema Dasar Kalkulus dikombinasikan dengan Aturan Pangkat Diperumum untuk
menghitung integral tentu yang diberikan (lihat Contoh 7 – 10).
15. 0∫1
(x2 + 1)10 (2x) dx
16. -1∫0
√(x3 + 1) (3x2) dx
17. -1∫3 1/(t + 2)2
dt
18. 2∫10 √(y – 1) dy
19. 5∫8
√(3x + 1) dx
20. 1∫7
1/√(2x + 2) dx
21. -3∫3
√(7 + 2t2) (8t) dt
22. 1∫3 (x2 + 1)/
√(x3 + 3x) dx
23. 0∫π/2 cos2
x sin x dx
24. 0∫π/2 sin2 3x cos 3x dx
25. 0∫π/2 (2x + sin x) dx
26. 0∫π/2 [4x + 3 + cos x) dx
27. 0∫4
[√x √(2x + 1)] dx
28. -4∫-1
(1 – s4)/2s2 ds
29. 0∫1
(x2 + 2x)2 dx
30. 0∫8a
(a1/3 – x1/3)3 dx
Penyelesaian
15. 0∫1 (x2 +
1)10 (2x) dx
Jika u = (x2 + 1), maka du
= 2x dx;
=
0∫1 u10 du
=
[1/11 (x2 + 1)11]1 – [1/11 (x2
+ 1)11]0
=
1/11 [12 + 1]11
=
2048/11
16. –1∫0
√(x3 + 1)(3x2) dx
Jika u = (x3 + 1), maka du
= 3x2 dx;
=
–1∫0
u1/2
du
=
[1/(3/2) (x3 + 1)3/2]0 – [1/(3/2) (x3
+ 1)3/2]–1
=
2/3 √([(03 + 1)]3) – 2/3 √([(–1)3 + 1]3
=
2/3(1) – 2/3(0)
=
2/3
17. –1∫3
1/(t + 2)2 dt
Jika u = (t + 2), maka du = dt;
=
–1∫3 u-2 du
=
[1/(–1) (t + 2)–1]3 – [1/(–1) (t + 2)–1]–1
=
–1/((3 + 2)) – 1/((–1 + 2))
=
–1/5 + 1
=
4/5
18. 2∫10
√(y – 1) dy
Jika u = (y – 1), maka du = dy;
=
2∫10 u1/2 du
=
[1/(3/2) (y – 1)3/2]10 – [1/(3/2) (y – 1)3/2]2
=
2/3 √((10 – 1)3) – 2/3 √((2 – 1)3)
=
2/3(27) – 2/3(1)
=
52/3
19. 5∫8
√(3x + 1) dx
Jika u = (3x + 1), maka du = 3 dx;
=
1/3 5∫8 u1/2 du
=
[1/(3×3/2) (3x + 1)3/2]8 – [1/(3×3/2) (3x +
1)3/2]5
=
2/9 √([3(8) + 1]3) – 2/9 √([3(5) + 1]3)
=
2/9(125) – 2/9(64)
=
(250 – 128)/9
=
122/9
20. 1∫7
1/√(2x + 2) dx
Jika u = 2x + 2, maka du = 2 dx;
=
1/2 1∫7 u–1/2 du
=
[1/(2×1/2) (2x + 2)1/2]7 – [1/(2×1/2) (2x +
2)1/2]1
=
√(2(7) + 2) – √(2(1) + 2)
=
4 – 2
=
2
21. –3∫3
√(7 + 2t2)(8t) dt
Jika u = (7 + 2t2), maka du
= 4t dt
=
2 ∫ u1/2 du
=
[2/(3/2) (7 + 2t2)3/2]3 – [2/(3/2) (7 +
2t2)3/2]–3
=
4/3 √([7 + 2(3)2]3) – 4/3 √([7 + 2(–3)2]3)
=
4/3(125) – 4/3(125)
=
0
22. 1∫3
(x2 + 1)/√(x3 + 3x) dx
Jika u = (x3 + 3x), maka du
= (3x2 + 3) dx
=
1/3 1∫3 u–1/2 du
=
[1/(3×1/2) (x3 + 3x) 1/2]3 –
[1/(3×1/2) (x3 + 3x) 1/2]1
=
2/3 √(33 + 3(3)) – 2/3 √(13 + 3(1))
=
2/3(6) – 2/3(2)
=
8/3
23. 0∫π/2 cos2
x sin x dx
Jika u = cos x, maka du = –sin
x dx
=
– 0∫90 u2 du
=
[–1/3 cos3 x]90 – [–1/3 cos3
x]0
=
–1/3 cos3 (90) + 1/3 cos3 (0)
=
–1/3(0) + 1/3(1)
=
1/3
24. 0∫π/2
sin2 3x
cos 3x dx
Jika u = sin 3x, maka du = 3 cos
3x dx;
= 1/3 0∫π/2 u2
du
= [1/(3×3) sin3 3x]90
– [1/(3×3) sin3 3x]0
=
1/9 sin3
3(90)
– 1/9 sin3
3(0)
=
1/9(–1) – 1/9(0)
=
–1/9
25. 0∫π/2
(2x + sin x) dx
= [2/2 x2 + (–cos
x)]90 – [2/2 x2 + (–cos x)]0
= [x2 – cos x)]90
– [x2 – cos x)]0
= [(90)2 – cos (90)] –
[ (0)2 – cos (0)]
= (8100 – 0) – (0 – 1)
= 8100 + 1
= 8101
26. 0∫π/2
[4x + 3 + cos x] dx
= [4/2 x2
+ 3/1 x + sin x]90 – [4/2 x2
+ 3/1 x + sin x]0
= [2x2
+ 3x + sin x]90 – [2x2 + 3x +
sin x]0
= [2(90)2 + 3(90) + sin
(90)] – [2(0)2 + 3(0) + sin (0)]
= (16200 + 270 + 1) – (0 + 0 + 0)
= 16471
27. 0∫4
[√x + √(2x + 1)] dx
Jika u =
x, maka du = dx dan jika v = (2x + 1), maka dv
= 2 dx;
= 0∫4 u1/2
du + 1/2 0∫4 v1/2 dv
= [1/(3/2) x3/2
+ 1/(2×3/2) (2x + 1)3/2]4 – [1/(3/2) x3/2
+ 1/(2×3/2) (2x + 1)3/2]0
= [2/3 √(x3) + 1/3
√((2x + 1)3)]4 – [2/3 √(x3) +
1/3 √((2x + 1)3)]0
= [2/3 √((4)3) + 1/3
√((2(4) + 1)3)] – [2/3 √((0)3) + 2/3 √((2(0) + 1)3)]
= [2/3 (8) + 1/3 (27)] – [0 + 2/3]
= (16 + 27 – 2)/3
= 41
28. –4∫–1
(1 – s4)/(2s2) ds
= –4∫–1 1/2(s–2 – s2)
ds
= [1/(2(–1)) s–1 –
1/2(3) s3]–1 – [ 1/(2(–1)) s–1 –
1/2(3) s3]–4
= [–1/2s – s3/6]–1
– [–1/2s – s3/6]–4
= [–1/2(–1) – ((–1)3)/6] –
[(–1/2(–4) – ((–4)3)/6)]
= [1/2 + 1/6] – [1/8 + 64/6]
= (12 + 4 – 3 – 256)/24
= –243/24
= –81/8
29. 0∫1
(x2 + 2x)2 dx
= 0∫1 x4
+ 4x3 + 4x2 dx
= [1/5 x5 + 4/4 x4
+ 4/3 x3]1 – [1/5 x5 + 4/4 x4
+ 4/3 x3]0
= 1/5 (1)5 + (1)4 +
4/3 (1)3
= (3 + 15 + 20)/15
= 38/15
30. a∫8a
(a1/3 – x1/3)3 dx
= a∫8a (a – 3a2/3 x1/3
+ 3a1/3 x2/3 – x) dx
= [ax – 9/4 x4/3
a2/3 + 9/5 a1/3 x5/3 –
1/2 x2]8a – [ax – 9/4 x4/3
a2/3 + 9/5 a1/3 x5/3 –
1/2 x2]a
= [a(8a) – 9/4 (8a)4/3
a2/3 + 9/5 a1/3 (8a)5/3 –
1/2 (8a)2] – [a(a) – 9/4 (a)4/3
a2/3 + 9/5 a1/3 (a)5/3) –
1/2 (a)2]
= – 49/20 a2
Soal-Soal 5.8
Gunakan metode penggantian untuk mencari integral
tak-tentu berikut.
1. ∫
√(3x + 2) dx
2. ∫
∛(2x – 4) dx
3. ∫
cos(3x + 2) dx
4. ∫
sin(2x – 4) dx
5. ∫
x √(x2 + 4) dx
6. ∫
x2(x3 + 5)9 dx
7. ∫
x sin(x2 + 4) dx
8. ∫
x2 cos(x3 + 5) dx
9. ∫
(x sin√(x2 + 4))/ √(x2 + 4) dx
10. ∫
x2(x3 + 5) cos[(x3
+ 5)9] dx
11. ∫ x cos(x2 + 4) √(sin(x2
+ 4)) dx
12. ∫
x2 sin(x3 + 5) cos9(x3
+ 5) dx
13. ∫
((√t + 4)3)/ √t dx
14. ∫
(1 + 1/t)-2 (1/t2) dt
Penyelesaian
1. ∫ √(3x + 2) dx
Jika u = (3x + 2), maka du = 3 dx
=
1/3 ∫ u(1/2) du
= 1/(3×3/2) (3x + 2)(3/2) + c
= 2/9 √((3x + 2)3) + c
2. ∫ ∛(2x – 4) dx
Jika u = (2x – 4), maka du = 2 dx
= 1/2 ∫ u(1/3)
du
= 1/(2×4/3) (2x
– 4)(4/3) + c
= 3/8 ∛((2x – 4)4) + c
3.
∫ cos(3x + 2) dx
Jika u = 3x + 2, maka du = 3 dx
= 1/3 ∫ cos u du
= 1/3 sin(3x
+ 2) + c
4. ∫ sin(2x – 4) dx
Jika u = 2x – 4, maka du = 2 dx
= 1/2 ∫ sin u du
= – 1/2 cos(2x – 4) + c
5. ∫ x √(x2 + 4) dx
Jika u = x2 + 4, maka du = 2x dx
= 1/2 ∫ u(1/2) du
= 1/(2×3/2) (x2 + 4)(3/2) + c
= 1/3 √((x2 + 4)3) + c
6. ∫ x2 (x3 + 5)9 dx
Jika u = x3 + 5, maka du = 3x2 dx
= 1/3 ∫ u9 du
= 1/(3×10) (x3 + 5)10 + c
= 1/30 (x3 + 5)10 + c
7.
∫ x sin(x2 + 4) dx
Jika u = x2 + 4, maka du
= 2x dx;
= 1/2 ∫ sin u
du
=
– 1/2 cos (x2 + 4) + c
8.
∫ x2 cos(x3 + 5) dx
Jika u = x3 + 5, maka du
= 3x2 dx;
= 1/3 ∫ cos u
du
= 1/3 sin(x3
+ 5) + c
9.
∫ (x sin√(x2 + 4))/√(x2 + 4) dx
Jika u = (x2 + 4)(1/2),
maka du = (x)(x2 + 4)(–1/2) dx
= ∫ sin u du
= – cos √(x2
+ 4) + c
10.
∫ x2 (x3 + 5)8 cos[(x3
+ 5)9] dx
Jika u = (x3 + 5)9,
maka du = 27x2 (x3 + 5)8 dx;
= 1/27 ∫ cos u du
= 1/27 sin[(x3
+ 5)9] + c
11.
∫ x cos(x2 + 4) √(sin(x2
+ 4)) dx
Jika u = sin(x2 + 4),
maka du = 2x cos(x2 + 4) dx;
= 1/2 ∫ u(1/2)
du
= – 1/(2×3/2) sin(x2
+ 4)(3/2) + c
= – 1/3 √(sin(x2
+ 4)3) + c
12.
∫ x2 sin(x3 + 5) cos9
(x3 + 5) dx
Jika u = cos(x3 + 5),
maka du = – 3x2 sin(x3 + 5) dx;
= –1/3 ∫ u9
du
= –1/(3×10) cos10
(x3 + 5) + c
= –1/30 cos10 (x3 + 5) + c
13.
∫ (√t + 4)3/√t dt
Jika u = t(1/2) + 4, maka du
= 1/2 t(–1/2) dt
= 2 ∫ u3
du
= 2/4 (t(1/2)
+ 4)4 + c
= 1/2 (t(1/2)
+ 4)4 + c
14.
∫ (1+1/t)(–2) (1/t2)
dt
Jika u = 1 + t(–1) maka du
= – t(–2) dt;
= – ∫ u^(–2)
du
= –1/(–1) (1 + t(–1))(
–1) + c
= 1/((1+1/t))
+ c
Gunakan metode penggantian dalam integral tentu untuk
menghitung masing-masing yang berikut (lihat Contoh 3 dan 4)
15. 0∫1
(3x + 1)3 dx
16. 0∫4
√(2t + 1) dt
17. 0∫2
t/√(t2 + 9)2 dt
18. 0∫√5
√(9 – x2) x dx
19. 0∫1
(x + 2)/(x2 + 4x + 1)2 dx
20. 0∫2
x2/ (9 – x3)3/2 dx
21. 0∫π/6
sin3 θ cos θ dθ
22. 0∫π/6
sin θ/ cos3 θ dθ
23. 0∫1
cos(3x – 3) dx
24. 0∫1/2
sin(2πx) dx
25. 0∫1
x sin(πx2) dx
26. 0∫π/4 (cos
2x + sin 2x) dx
27. 0∫π/2 sin
x sin(cos x) dx
28. 0∫1
x cos3(x2) sin(x2)
dx
29. 1∫4
1/ √ t(√t + 1)3 dt
30. 1∫2
(1 + 1/t)2 (1/t2) dt
Penyelesaian
15.
0∫1 (3x + 1)3 dx
Jika u = (3x + 1) maka du = 3 dx;
= 1/3 0∫1
u3 du
= [1/(3×4) (3x + 1)4]1 – [1/(3×4) (3x + 1)4]0
= 1/12 ([3(1) + 1]4 – [3(0) + 1]4)
= 1/12 (256 – 1)
= 255/12 = 85/4
16.
0∫4 √(2t + 1) dt
Jika u = (2t + 1) maka du = 2 dt;
= 1/2 0∫4 u(1/2) du
= [1/(2×3/2) (2t + 1)(3/2)]4
– [1/(2×3/2) (2t + 1)(3/2)]0
= 1/3 (√((2(4) + 1)3)
– √((2(0) + 1)3))
= 1/3(27 – 1)
= 26/3
17.
0∫2 t/(t2 + 9)2 dt
Jika u = (t2 + 9) maka du
= 2t dt;
= 1/2 0∫2
u(–2) du
= [1/(2×(–1)) (t2 + 9)(-1)]2 – [1/(2×(–1)) (t2 + 9)(-1)]0
= –1/2 (1/[(2)2 + 9]
– 1/[(0)2 + 9])
= –1/2 (1/13 – 1/9)
= (–9 + 13)/234
= 4/234 = 2/117
18.
0∫(√5) √(9 – x2) x dx
Jika u = (9 – x2) maka du
= – 2x dx;
= –1/2 0∫(√5) u(1/2)
du
= [–1/(2×3/2) (9 – x2)(3/2)]√5
– [–1/(2×3/2) (9 – x2)(3/2)]0
= –1/3 (√([9 – (√5)2]3) – √([9 – (0)2]3))
= –1/3 (8 – 27)
= 19/3
19.
0∫1 (x + 2)/(x2 + 4x + 1)2
dx
Jika u = (x2 + 4x + 1)
maka du = (2x + 4) dx;
= 1/2 0∫1 u(-2) du
= [1/(2×(–1)) (x2 + 4x + 1)(–1)]1
– [1/(2×(–1)) (x2 + 4x + 1)(–1)]0
= –1/2 (1/[(1)2 + 4(1) + 1] – 1/[(0)2
+ 4(0) + 1] )
= –1/2 (1/6 –1/1)
= (–1 + 6)/12
= 5/12
20.
0∫2 x2/(9 – x3)(3/2)
dx
Jika u = (9 – x3) maka du
= – 3x2 dx;
= –1/3
0∫2 u(–3/2) du
= [–1/(3×(–1/2)) (9 – x3)(–1/2)]2 – [–1/(3×(–1/2))
(9 – x3)(–1/2)]0
= 2/3 (1/√(9 – (2)3) – 1/√(9 – (0)3))
= 2/3 (1 – 1/3)
= (6 – 2)/9
= 4/9
21.
0∫(π/6) sin3
θ cos θ dθ
Jika u = sin θ maka du = cos θ dx;
= 0∫(π/6) u3
du
= [1/4 (sin θ)4](π/6) –
[1/4 (sin θ)4]0
= 1/4 (sin4 (π/6)
– sin4 (0))
= 1/4 (1/16 – 0)
= 1/64
22.
0∫(π/6) sin
θ/cos3 θ dθ
Jika u = cos θ maka du = – sin θ dθ;
= – 0∫(π/6) u(–3)
du
= [–1/2 (cos θ)(-2)](π/6) –
[–1/2 (cos θ)(–2)]0
= –1/2 (1/cos2 (π/6) – 1/cos2 0)
= –1/2 (1/(3/4) – 1/1)
= (–4 + 4)/6
= –1/6
23.
0∫1 cos(3x – 3) dx
Jika u = 3x – 3 maka du = 3 dx;
= 1/3
0∫1 cos u du
= [1/3 sin(3x – 3)]1 – [1/3 sin(3x – 3)]0
= 1/3 (sin[3(1) 3] – sin[3(0) – 3])
= sin(3)/3
24.
0∫(1/2) sin (2πx) dx
Jika u = 2πx
maka du = 2π dx;
= 1/2π 0∫(1/2)
sin u du
= [–1/2π cos 2πx](1/2)
– [–1/2π cos 2πx]0
= –1/2π (cos 2π(1/2) – cos 2π(0))
= –1/2π(–1–1)
= 1/π
25.
0∫1 x sin(πx2) dx
Jika u = πx2 maka du = 2πx dx;
= 1/2π 0∫1
sin u du
= [–1/2π cos πx2]1 – [–1/2π cos πx2]0
= –1/2π (cos π(1)2 – cos π(0)2)
= –1/2π(–1–1)
= 1/π
26.
0∫(π/4) (cos
2x + sin 2x) dx
Jika u = 2x maka du = 2 dx;
= 1/2 (0∫(π/4) cos
u du + 0∫(π/4) sin
u du)
= [1/2 (sin 2x – cos 2x)](π/4) –
[1/2 (sin 2x – cos 2x)](π/4)
= 1/2 ([sin 2(π/4)
– cos 2(π/4)]
– [sin 2(0) – cos 2(0)])
= 1/2 ([1 – 0] – [0 – 1])
= 1/2 + 1/2
= 1
27.
0∫(π/2) sin
x sin (cos x) dx
Jika u = cos x maka du = – sin x
dx;
= – 0∫(π/2) sin u du
= [cos(cos x)](π/2) – [cos(cos x)]0
= cos [cos (π/2) – cos (0)]
= cos (0 – 1)
= 1 – cos (1)
28.
0∫1 x cos3 (x2) sin(x2)
dx
Jika u = cos(x2) maka du
= –2x sin (x2) dx;
= –1/2 0∫1 u3 du
= [–1/(2×4) cos4 (x2)]1 – [–1/(2×4)
cos4 (x2)]0
= –1/8 (cos4 ([1]2) – cos4 ([0]2))
= – (cos4
(1)/8 – 1/8)
29.
1∫4 1/(√t (√t + 1)3) dt
Jika u = (t(1/2) + 1) maka du
= 1/2 t(–1/2) dt;
= 2 1∫4
u(–3) du
= [2/(–2) (t(1/2) + 1)(–2)]4 – [2/(–2)
(t(1/2) + 1)(–2)]1
= –1/(√4 + 1)2 + 1/(√1 + 1)2
= –1/9 + 1/4
= (–4 + 9)/36
= 5/36
30.
1∫2 (1
+ 1/t)2 (1/t2) dt
Jika u = (1 + t(–1)), maka du = –t(–2)
dt;
= –1∫2
u2 du
= [–1/3 (1 + t(–1))3]2 – [–1/3 (1 +
t(–1))3]1
= –1/3 ((1 + 1/([2]))3 + (1 + 1/([1]))3)
= –1/3 (27/8 + 8)
= (–27 + 64)/24
= –37/24
Dalam Soal 31 – 38, gunakan simetri untuk membantu anda menghitung
integral yang diberikan
31. –π∫π
(sin x + cos x) dx
32. –1∫1
x3/ (1 + x2)4 dx
33. –π/2∫π/2
sin x/ (1 + cos x) dx
34. –∛π∫∛π
x2 cos(x3) dx
35. –π∫π
(sin x + cos x)2 dx
Penyelesaian
31. (–π)∫π (sin x
+ cos x) dx
= [–cos x + sin
x]π – [–cos x + sin x]–π
= (–cos π + sin π) – (–cos (–π) + sin (–π))
= (–(–1) + 0) – (– (–1)
+ 0)
= 1 – 1
= 0
32.
(–1)∫1 x3/(1 + x2)4
dx
Jika u = (1 + x2), maka du
= 2x dx;
= 1/2 (–1)∫1
(u – 1) u(–4) du
= [1/2 (1/(–2) u(–2)
– 1/(–3) u(–3))]1 – [1/2 (1/(–2) u(–2)
– 1/(–3) u(–3))] –1
= (–1/2 [1/(2(1)2)
– 1/(3(1)3)]) – (–1/2 [1/(2(–1)2) – 1/(3(–1)3)])
= (–1/4 + 1/6) – (–1/4
+ 1/6)
= (–3 + 2 + 3 – 2)/12
= 0
33.
(–π/2)∫(π/2) sin
x/(1 + cos x) dx
Jika u = (1 + cos x), maka du = – sin
x dx;
= –(–π/2)∫(π/2) u(–1)
du
= [ln|u|](π/2) –
[ln|u|](–π/2)
= ln |1 + cos (π/2)
| – ln |1 + cos (–π/2)|
= ln |1 + 0| – ln |1 + 0|
= 0
34.
(–∛π)∫(∛π) x2
cos (x3) dx
Jika u = x3, maka du = 3x2
dx;
= 1/3 (–∛π)∫(∛π) cos
u du
= [1/3 sin x3](∛π) –
[1/3 sin x3](–∛π)
= (1/3 sin ([∛π]3)) – (1/3 sin ([–∛π]3))
= (1/3 (0)) – (1/3 (0))
= 0
35.
(–π)∫π (sin x + cos x)2 dx
= (–π)∫π 1 + sin 2x dx
= [x – 1/2 cos 2x](π)
– [x – 1/2 cos 2x](–π)
= ((π) – 1/2 cos 2(π)) – ((–π) –
1/2 cos 2(–π))
= ((π) – 1/2) – ((–π) + 1/2)
= 2π
Comments
Post a Comment